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The charge quantisation condition for Dirac dyons 

D K Ross 
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Received 22 September 1986 

Abstract. Using a fibre bundle approach as in the work of Wu and Yang, we find that the 
charge quantisation condition for two dyons each with Dirac magnetic charge g, and charge 
q,  is q , g , = & h c n ,  and q 2 g ,  =;hen , ,  where n, and nz are integers. This is more restrictive 
than the condition 9 , g ,  - 9,g,  = ficn found by Schwinger and Zwanziger using an infinite 
string of singularities. Our condition does not allow a new elementary unit of electric 
charge for dyons contrary to their condition. Our quantisation condition agrees with the 
result one would obtain using a minimal, semi-infinite string of singularities, just as the 
result of Wu and Yang agrees with the Dirac version of the quantisation condition but not 
the Schwinger version for the case of an uncharged magnetic monopole. 

1. Introduction 

Dirac (1931, 1948) first considered the possibility of a magnetic monopole and found 
that the magnetic charge g was related to the charge on the electron by eg = inhc  where 
n is an integer. He formulated his theory in terms of a minimal semi-infinite string of 
singularities in the vector potential, A,, terminating on the magnetic charge. Schwinger 
(1966) used an infinite string of singularities with the magnetic charge in the centre 
and found eg = nhc instead (see also Peres 1968). Wu and Yang (1975) discussed 
magnetic monopoles in the much more elegant language of fibre bundles. Here a 
magnetic monopole is a non-trivial principal fibre bundle with structure group U,  over 
base space R 3 - { 4 }  which can be contracted to S 2 .  Strings of singularities for the 
magnetic monopoles are replaced by the fact that at least two different open sets are 
now required to cover the base space with the vector potential (connection in the fibre 
bundle language) defined differently in the two different regions. They found 

A - g ( l + c o s 8 )  
”- r sin e 

w h e r e r e g i o n a i s { O ~ e < . r r / 2 + 6 , O < r , O ~ ~ < 2 . r r , a l l  t } a n d r e g i o n b i s { . r r / 2 - 6 < 8 ~  
T ,  0 < r, 0 s 4 < 27r, all t } .  These two vector potentials are related by a gauge transfor- 
mation (transition function in the fibre bundle language) in the overlap region near 
the equator of S 2 .  Requiring the phase factor of an electron wavefunction to be 
single-valued under this gauge transformation in the overlap region leads to the 
quantisation condition eg = i n h c  in agreement with Dirac but not Schwinger. 

In this paper we will look at the quantisation condition for dyons, particles that 
contain both electric and magnetic charges. Schwinger (1968, 1969) considered such 
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particles and  found for two dyons with charges ( q I ,  g , )  and ( q2,  gz) that the quantisation 
condition becomes 

418, - 9281 = hen. (3) 

Using an infinite antisymmetric string function, Zwanziger (1968) found this same 
result and pointed out that it allows dyons to have an elementary unit of electric charge 
unrelated to the charge on the electron. (Other authors (Witten 1979) have used (3) 
but with an  additional factor of inserted on the right-hand side. This latter version 
can be derived heuristically by considering the angular momentum in the field of the 
two-dyon system (Saha 1936, Fierz 1944, Wilson 1949).) The combination of charges 
on the left-hand side of (3) is invariant under a duality rotation (like a chiral transforma- 
tion in quantum theory), as are Maxwell's equations with electric and  magnetic sources 
present. If the semi-infinite string function is used in Zwanziger's (1968) work, instead 
of (3), we find 

4182 = 4 %  hc q2gl = i n , h c  (4) 

as we might expect from the usual Dirac quantisation condition. This does not allow 
dyons to have a new elementary unit of electric charge. 

In this paper we extend the work of Wu and Yang (1975) to two (or more) dyons. 
Even though this approach is based on the fibre bundle description of gauge theories, 
we will avoid the fibre bundle language for the most part. Fundamentally, however, 
it is important to realise that a magnetic monopole is a non-trivial principal fibre 
bundle and to treat it as such. This avoids the uncertainties of not knowing what type 
of string singularities to use and becomes important when different string versions 
make very different physical predictions as in (3) and  (4) above. We will show that a 
generalised Wu and Yang approach gives (4) above and not (3) in agreement with a 
(minimal) semi-infinite string. Thus a new elementary unit of electric charge on dyons 
appears ruled out. Let us look at this in detail now. 

2. Dyon quantisation condition 

Consider two dyons with electric and magnetic charges (q , ,  8 , )  and ( q 2 ,  g.) respectively. 
We wish to extend the work of Wu and  Yang (1975) to this case. Now a minimum 
of three overlapping open sets are required. Let the two dyons be on the z axis with 
( q l ,  8,) at z = + d  and ( q r ,  g r )  at z = - d  in a cylindrical coordinate system. We can 
choose the three open sets as follows: 

set A: z > d 0 < 4 < 2 7 T  r > O  

set B: z < r'+ d' 0 < 4 < 2 T  r > O  ( 5 )  

set C: z < -d  O S d < 2 7 T  r > 0 .  

Note that set B overlaps both A and C but that A and C d o  not overlap each other. 
Set B is the region between the two sheets of the hyperboloid z 2 / d ' -  r 2 / d 2  = 1 which 
crosses the z axis at points z = * d .  Set B extends upward in the positive z direction 
into set A and downward in the negative z direction into set B. Other choices of these 
sets are of course possible. 
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The electromagnetic vector potential describing the magnetic monopoles (but not 
the electric charges) is then given in the three regions by 

These vector potentials are finite everywhere in their respective regions except at the 
position of the charges, assuming the positive square root is always taken so that, for 
example, [ r* + ( z  - d ) 2 ] " 2 +  ) z  - dl as r -+ 0. As r + 0 they all approach zero. One can 
easily show that taking the curl of the vector potential gives the correct magnetic field 
everywhere. N o  infinite or semi-infinite strings of singularities appear. The electric 
charges on the dyons can also be included through the usual p = 0 component of the 
electromagnetic vector potential A,. This is 

91 q 2  
A -  () - [ r 2  + ( z  - d )-] 7 1 / 2 +  [ r 2  + ( z  + d )']''* ( 7 )  

in all three regions A, B and C. It is also finite everywhere except the position of the 
dyons. (6) and (7) together give A,  everywhere. 

Now we are interested in the regions where B overlaps A and where B overlaps 
C. In these overlap regions we have 

A,, - = - 2 g , /  r 

Ad< - AdB = -2gJ  r. 

These two vector potentials must be related by a gauge transformation. We know that 
particles carrying electric charge e but not magnetic charge exist. Consider now an 
electron moving near the two dyons. Under a gauge transformation of the form 

the electron wavefunction will change according to 

GB = eluns $A (10) 

since the electron wavefunction in general has a phase factor (Wu and  Yang 1975) 
exp(ie/fic) A, dxg  for any path from P to Q. This phase factor gives the usual 
minimally coupled gauge covariant d, + (ie/  h c ) A ,  derivative, for an  electron interact- 
ing with an  external electromagnetic field (Mandelstam 1962). (8) and  (9) then give 

Requiring the electron wavefunction to be single-valued then gives from (10) and (1  1)  
that 

e g ,  = i n ,  f ic  eg2 = fn,hc. ( 1 2 )  
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This is very similar to the work of Wu and  Yang and  it is not surprising that the 
magnetic charges on the dyons are quantised according to the usual Dirac quantisation 
condition. 

Having looked at electron wavefunctions, let us now consider the interaction of 
one dyon with the other and  look at  the wavefunctions of the dyons themselves. These 
also must be single-valued under gauge transformations. If we consider dyon 1 with 
charges ( q, ,  8,) interacting with an  external electromagnetic field, we have that q ,  
appears in gauge-covariant derivatives as a, + ( iq l /  hc)A,  where A,  are electromagnetic 
fields other than those generated by (SI,  gl) .  A convenient way to write the interaction 
of the magnetic monopole with the external field is in terms of an additional term 
ig, B,/ hc in the above gauge-covariant derivative. The dyon wavefunction in general 
then has a phase factor 

exp( iq1 A ,  dx”  +& IpQ B, dx’) 
hC 

This B, is related to A,  by 

B, is the potential for the dual of the electromagnetic field tensor with 

Note that Ayis - AsIy  is well defined on the right-hand side of (14) even when A, is 
defined differently on different open sets, since this is just the continuous electromag- 
netic field tensor Fys.  

Now if dyon 1 above is interacting with a second dyon with charges (q2, g,), this 
second dyon will act as the source of the A,  and B, in (13).  When looking at the 
interaction of q1 with an  external field it is most convenient to work in terms of A,  
in (13). B, is more convenient when looking at the interactions of the magnetic 
monopole charge g, in (13).  External fields must be expressed either in terms of A, 
or  in terms of B, but we cannot use both A ,  and B, at the same time in describing 
these sources. (Our use of B, here differs significantly from the way in which it is 
used in early work on magnetic monopoles by Cabibbo and  Ferrari (1962). In their 
work FFY = a,A, -a,,A, + &pYPVapBu and a single set of potentials is used for all regions. 
Their derivatives d o  not obey the Jacobi identities.) 

We need the A,  produced by dyon 2 .  We will need two regions to describe the 
magnetic monopole g,. Following Wu and  Yang we can use their regions and A,~x 
and A,, in ( 1 )  and (2)  above with g+  g,. The electric charge on dyon 2 will also give 
rise to an  An which we can write as 

An = q 2 /  r (16) 

in both regions in spherical coordinates. We also need the B, produced by dyon 2. 
Note that, since B, is the potential for the dual of the electromagnetic field tensor, 
duality invariance tells us that the roles of the electric and magnetic monopoles are 
reversed now. That is, a magnetic monopole produces a trivial B, which can be defined 
as 
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in both of Wu and Yang's regions, whereas an electric monopole now requires more 
than one open set for its description. We have for the electric charge that 

(1-cos 6 )  B -- 
*,' - r sin 6 

92 

and 

in their two regions a and  b. 
Now the wavefunction of dyon 1 with phase factor (13) must be single-valued 

under the gauge transformation which takes A,, and A,,,. Under the gauge transfor- 
mation 

we have that the dyon wavefunction will change according to 

(Lb = e'"dh$CI, 

where 

Requiring the dyon wavefunction to be single-valued then gives 

q 1 g 2 = f n , h c .  (23) 

The wavefunction of dyon 1 with phase factor (13) must also be single-valued under 
the gauge transformation which takes BFh into B,,,. When looking at the interaction 
of g ,  with the other dyon, it is most convenient to work in terms of B,. B,,$ and B,, 
are given in (17)-( 19). The dyon 1 wavefunction will change according to 

( L ~  = e'pdh*a (24) 

under 

Using (17)-(19) gives 

Requiring the dyon 1 wavefunction to be single-valued under this gauge transformation 
then gives the quantisation condition 

(27) 
Note that the gauge transformations (20) and ( 2 5 )  are completely independent 

because of the structure of (14). The dyon 1 wavefunction must be single-valued under 
(20) and (25) independently. Thus we obtain both (23) and (27) .  These are our dyon 
quantisation conditions. 

g ,  qz = i n2  hc. 
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3. Discussion 

Our  dyon quantisation conditions (23) and  (27) agree with the result (4) Zwanziger 
(1968) obtains if he uses a semi-infinite string function. It is interesting that the 
Wu-Yang (1975) fibre bundle approach followed here leads to the quantisation 
condition for both ordinary magnetic monopoles and for dyons that one would obtain 
using a minimal semi-infinite string of singularities rather than an  infinite string of 
singularities. Our  conditions are consistent with (3), but more restrictive. (12), (23) and 
(27) taken together imply that dyons containing Dirac (1931, 1948) type magnetic 
monopoles must have electric charges which are integer multiples of the charge on the 
electron. The Schwinger (1968, 1969) and Zwanziger (1968) condition (3) would allow 
dyons to carry a second elementary unit of electric charge unrelated to the charge on 
the electron (Zwanziger 1968). For completeness we should mention the interesting 
work by Witten (1979) who shows that in a theory with a CP violating term 
0e2(32.rr2)-'F,,F,,,, a dyon can have a charge ne - e0/27r. The dyons he discusses 
involve 't Hooft (1974)-Polyakov (1974) magnetic monopoles (early work on Yang- 
Mills monopoles was also done by Joseph (1972) and Kerner (1975)) rather than the 
Dirac type monopoles discussed in this paper and  above. The two different types are 
quite different objects mathematically (Ezawa and  Tze 1976). Nonetheless, since there 
is no measurable distinction between Abelian and non-Abelian poles if one is far away, 
our results also can be applied to non-Abelian poles. 

Schwinger (1968, 1969) and Zwanziger (1968) seem to have been led to the 
quantisation condition (3) on qlg,  - q 2 g ,  primarily because this combination is duality 
rotation invariant. Since particles like the electron exist, giving quantisation conditions 
like (12) which are clearly not duality rotation invariant, there seems to be no good 
physical reason to insist that a dyon be treated in a duality invariant fashion. 
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